Performance Consistency of AlSi10Mg Alloy Manufactured by Simulating Multi Laser Beam Selective Laser Melting (SLM): Microstructures and Mechanical Properties

Materials (Basel). 2018 Nov 22;11(12):2354. doi: 10.3390/ma11122354.

Abstract

Multi-laser beam selective laser melting (SLM) technology based on a powder bed has been used to manufacture AlSi10Mg samples. The AlSi10Mg alloy was used as research material to systematically study the performance consistency of both the laser overlap areas and the isolated areas of the multi-laser beam SLM manufactured parts. The microstructures and mechanical properties of all isolated and overlap processing areas were compared under optimized process parameters. It was discovered that there is a raised platform at the junction of the overlap areas and the isolated areas of the multi-laser SLM samples. The roughness is significantly reduced after two scans. However, the surface roughness of the samples is highest after four scans. As the number of laser scans increases, the relative density of the overlap areas of the samples improves, and there is no significant change in hardness. The tensile properties of the tensile samples are poor when the overlap area width is 0, 0.1, or 0.2 mm. When the widths of the overlap areas are equal to or greater than 0.3 mm, there is no significant difference in the tensile strength between the overlap and the isolated areas.

Keywords: AlSi10Mg; mechanical property; microstructure; multi-laser manufacturing; selective laser melting.