Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray

Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10720-E10729. doi: 10.1073/pnas.1807991115. Epub 2018 Oct 22.

Abstract

Adequate pain management remains an unmet medical need. We previously revealed an opioid-independent analgesic mechanism mediated by orexin 1 receptor (OX1R)-initiated 2-arachidonoylglycerol (2-AG) signaling in the ventrolateral periaqueductal gray (vlPAG). Here, we found that low-frequency median nerve stimulation (MNS) through acupuncture needles at the PC6 (Neiguan) acupoint (MNS-PC6) induced an antinociceptive effect that engaged this mechanism. In mice, MNS-PC6 reduced acute thermal nociceptive responses and neuropathy-induced mechanical allodynia, increased the number of c-Fos-immunoreactive hypothalamic orexin neurons, and led to higher orexin A and lower GABA levels in the vlPAG. Such responses were not seen in mice with PC6 needle insertion only or electrical stimulation of the lateral deltoid, a nonmedian nerve-innervated location. Directly stimulating the surgically exposed median nerve also increased vlPAG orexin A levels. MNS-PC6-induced antinociception (MNS-PC6-IA) was prevented by proximal block of the median nerve with lidocaine as well as by systemic or intravlPAG injection of an antagonist of OX1Rs or cannabinoid 1 receptors (CB1Rs) but not by opioid receptor antagonists. Systemic blockade of OX1Rs or CB1Rs also restored vlPAG GABA levels after MNS-PC6. A cannabinoid (2-AG)-dependent mechanism was also implicated by the observations that MNS-PC6-IA was prevented by intravlPAG inhibition of 2-AG synthesis and was attenuated in Cnr1-/- mice. These findings suggest that PC6-targeting low-frequency MNS activates hypothalamic orexin neurons, releasing orexins to induce analgesia through a CB1R-dependent cascade mediated by OX1R-initiated 2-AG retrograde disinhibition in the vlPAG. The opioid-independent characteristic of MNS-PC6-induced analgesia may provide a strategy for pain management in opioid-tolerant patients.

Keywords: analgesia; endocannabinoid; median nerve stimulation; orexin; periaqueductal gray.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesia*
  • Animals
  • Endocannabinoids / metabolism*
  • Gray Matter / metabolism*
  • Humans
  • Median Nerve / drug effects
  • Median Nerve / physiology*
  • Mice
  • Orexins / pharmacology*

Substances

  • Endocannabinoids
  • Orexins