Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1987 May;169(5):1923-8.

Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase.


In Citrobacter freundii and Enterobacter cloacae, synthesis of AmpC beta-lactamase is inducible by the addition of beta-lactams to the growth medium. Spontaneous mutants that constitutively overproduce the enzyme occur at a high frequency. When the C. freundii ampC beta-lactamase gene is cloned into Escherichia coli together with the regulatory gene ampR, beta-lactamase expression from the clone is inducible. Spontaneous cefotaxime-resistant mutants were selected from an E. coli strain carrying the cloned C. freundii ampC and ampR genes on a plasmid. Virtually all isolates had chromosomal mutations leading to semiconstitutive overproduction of beta-lactamase. The mutation ampD2 in one such mutant was caused by an IS1 insertion into the hitherto unknown ampD gene, located between nadC and aroP at minute 2.4 on the E. coli chromosome. The wild-type ampD allele cloned on a plasmid could fully trans-complement beta-lactamase-overproducing mutants of both E. coli and C. freundii, restoring the wild-type phenotype of highly inducible enzyme synthesis. This indicates that these E. coli and C. freundii mutants have their lesions in ampD. We hypothesize that induction of beta-lactamase synthesis is caused by blocking of the AmpD function by the beta-lactam inducer and that this leads directly or indirectly to an AmpR-mediated stimulation of ampC expression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk