Display Settings:

Format

Send to:

Choose Destination
Biochemistry. 1986 Sep 9;25(18):4999-5004.

Structure and activities of a variant ubiquitin sequence from bakers' yeast.

Abstract

Ubiquitin is an extremely conserved protein, with an identical sequence throughout the animal kingdom. However, the gene sequence of the yeast protein [Ozkaynak, E., Finley, D., & Varshavsky, A. (1984) Nature (London) 312, 663-666] predicts three amino acid differences. This implies that some functions or binding interactions of ubiquitin are different in yeast and animal cells. In an effort to define these differences, ubiquitin has been purified to homogeneity from bakers' yeast and characterized. Amino acid analysis of the protein and the isolated tryptic peptides confirms the primary structure of this protein as predicted from the gene sequence. This result indicates that the gene sequenced is the transcriptionally active gene from yeast. The conformation of yeast ubiquitin is similar to human ubiquitin as judged by circular dichroism, sensitivity to trypsin, and Stokes radius. Yeast and animal ubiquitins show identical activities in supporting ubiquitin-dependent protein degradation and in the ATP-pyrophosphate exchange reaction catalyzed by the purified ubiquitin-adenylating enzyme. Thus, the three conservative amino acid differences between yeast and animal ubiquitins have very little effect on the structure of ubiquitin or its activity in the ubiquitin-dependent proteolytic system. These results suggest that at least some of the evolutionary pressure preventing sequence variation among animal ubiquitins stems from one or more of its nonproteolytic functions.

PMID:
3021209
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk