Experimental study of performance enhanced IM/DD transmissions based on constellation switching

Opt Express. 2018 Jun 11;26(12):15480-15489. doi: 10.1364/OE.26.015480.

Abstract

In this work, we experimentally investigate the performance improvement in IM/DD systems using constellation switching (CS), which is simple to implement with a reasonably low complexity. By encoding extra bits on the selection of a PAM constellation pattern from a set of constellations, a lower symbol rate can be used to achieve the same system bit rate compared with standard PAM systems based on a single constellation pattern. In our experiments with bandwidth limited components, including a 14 GHz bandwidth digital-to-analog converter (DAC), we demonstrate that the CS signals can improve the receiver sensitivity. In particular, in the 112 Gbit/s PAM4 case, the required receiver power was reduced by 0.8 dB and 1.1 dB using the CS at the HD FEC threshold of BER = 4 × 10-3 in the back-to-back (B2B) and 3 km fiber transmission, respectively. Similarly, in the 84 Gbit/s two-dimension (2D) PAM4 case, the required receiver power was reduced by 1.05 dB and 3.5 dB at the HD FEC threshold of BER = 4 × 10-3 in the back-to-back (B2B) and 5 km fiber transmission, respectively. Moreover, we show by simulations that the improved performance of using the CS signals is also observed over a wide range of transmitter bandwidth, further indicating the merits of using the CS in IM/DD PAM transmissions.