Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Brain Res. 1986;61(3):597-606.

Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat.

Abstract

We have previously reported that electrical stimulation in LC or NRM when tested on the activity of a multireceptive neurone in the spinal cord produced similar inhibitory actions. The present study aimed to define the pathways that mediate this descending inhibitory action in the spinal cord by pharmacological means and by making surgical lesions in the spinal cord or NRM. Attempts to differentiate pathways pharmacologically did not succeed since the i.v. administration of the 5-HT antagonists, methysergide and cinnanserin failed to antagonise descending inhibition evoked from either NRM or LC. Lesions involving a part or whole of the ipsilateral ventral quadrant reduced the inhibition produced from LC to a greater extent than that from NRM in 24 multireceptive neurones. In seven of these neurones stimulation in LC was without any effect after the lesion. In 23 multireceptive neurones recorded after making lesions that spared the ipsilateral ventral quadrant the effects of LC stimulation were unchanged. NRM effectiveness was reduced by an ipsilateral dorsolateral funiculus (DLF) lesion but required a bilateral DLF lesion for an almost complete abolition. Similar results were obtained when the effect of the various lesions were studied on the dorsal root potentials (DRPs) generated from LC or NRM. Lesions in the midline raphe complex, that included NRM, did not block the inhibitory action of LC stimulation. The inhibition produced from both these nuclei was additive whereas excitation was not. We conclude that LC actions in the spinal cord are mediated primarily through a pathway in the ipsilateral ventral quadrant whereas those from NRM are mediated through bilateral projections in DLF. Furthermore, although NRM plays no part in mediating LC actions and separate and independent pathways mediate their spinal action yet these apparently independent pathways have plenty of scope for interaction in the dorsal horn of the spinal cord itself.

PMID:
3007190
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk