Nitrous Oxide and Ammonia Emissions from Cattle Excreta on Shortgrass Steppe

J Environ Qual. 2018 May;47(3):419-426. doi: 10.2134/jeq2017.12.0463.

Abstract

Grazing cattle redistribute nitrogen (N) consumed in forage through urine and feces patches. The high concentration of N in these patches often exceeds the uptake demands of the local plant community, thereby providing ideal conditions for losses of reactive N. However, knowledge on nitrous oxide (NO) and ammonia (NH) emissions from excretal patches on shortgrass steppe grassland is limited. We studied the effect of cattle urine (1002 kg N ha) and feces (1021 kg N ha) patches on NO and NH emissions in two sites with contrasting vegetation: (i) cool-season (C3) 'Bozoisky-Select' Russian wildrye [ (Fisch.) Nevski], pasture (C3Past) and (ii) C4-dominated native shortgrass steppe rangeland (C4SS). Nitrous oxide and NH were measured using semi-static and semi-open chambers, respectively. Cumulative NO emissions were 217 and 173% greater and cumulative volatile NH emissions were 339 and 157% greater on C3Past compared with C4SS from the urine and feces treatments, respectively. Nitrous oxide emission factors were 0.20 and 0.05% for urine and 0.07 and 0.03% for feces on C3Past and C4SS, respectively. Our findings suggest that using the IPCC Tier 1 default emission factor (2%, 95% CI = 0.7-6%) to estimate NO emissions from cattle excretal patches on shortgrass steppe grassland would result in a significant overestimation for these dryland systems. Ammonia emission factors were 35 and 10% for urine and 7 and 5% for feces on C3Past and C4SS, respectively. With the exception of the urine treatment on C3Past, observed NH emissions were consistent with the IPCC Tier 1 default assumption that 20% (95% CI = 5-50%) of excretal N is volatilized as NH+NO.

MeSH terms

  • Ammonia / analysis*
  • Animals
  • Cattle
  • Feces / chemistry*
  • Grassland
  • Nitrogen
  • Nitrous Oxide / analysis*
  • Urine / chemistry*

Substances

  • Ammonia
  • Nitrous Oxide
  • Nitrogen