Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro

J Cell Biol. 1988 Nov;107(5):1793-7. doi: 10.1083/jcb.107.5.1793.

Abstract

Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP-containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Animals
  • Biological Transport
  • Dyneins / metabolism*
  • Flagella / metabolism*
  • In Vitro Techniques
  • Male
  • Microtubules / metabolism*
  • Tubulin / isolation & purification

Substances

  • Tubulin
  • Adenosine Triphosphatases
  • Dyneins