Photolytic Reactivity of Organometallic Chromium Bipyridine Complexes

Inorg Chem. 2018 Aug 20;57(16):9611-9621. doi: 10.1021/acs.inorgchem.7b03195. Epub 2018 Feb 20.

Abstract

Known stable [Cr(bpy)2(Ph)2](BPh4) complexes undergo reductive elimination of biphenyl with visible-light photolysis using household incandescent or compact fluorescent light bulbs. A series of [Cr(R-bpy)2(Ar)2](X) complexes (R = H or CMe3; Ar = Ph, C6H4-CMe3, or C6H4-OMe; X = I, BPh4, or PF6) were prepared, and the effect of varying the bipyridine and aryl ligands on the UV-visible spectra and electrochemistry of the chromium(III) complexes was investigated. Photolysis of a mixture of two different bis(aryl) complexes gave only the homocoupled biaryl products by 1H NMR and gas chromatography/mass spectrometry analysis. The initial product of photoinduced reductive elimination of [Cr(bpy)2(Ar)2](PF6) was trapped with bipyridine to generate [Cr(bpy)3](PF6) and with benzoyl peroxide to form [Cr(bpy)2(O2CPh)2](PF6). The latter chromium(III) bis(benzoate) complex was also synthesized by the addition of bipyridine and PhCO2H to Cp2Cr, followed by air oxidation. The neutral Cr(bpy)(S2CNMe2)Ph2 complex also generated biphenyl upon visible-light photolysis. While the treatment of Cr(tBu-bpy)(dpm)Cl2 [dpm = (OCtBu)2CH] with AgO2CPh gave trans-Cr(tBu-bpy)(dpm)(O2CPh)2, reaction of the dichloro precursor with PhMgCl produced anionic [Cr(tBu-bpy)Ph3]- with [Mg(dpm)(THF)4]+ as the countercation, with both complexes characterized by single-crystal X-ray diffraction. Protonolysis of Cr(bpy)Ph3(THF) with 8-hydroxyquinoline produced Cr(bpy)(quin)Ph2, which generated biphenyl under visible-light photolysis, and the initial product of reductive elimination was trapped by bipyridine or benzoyl peroxide. A related Cr(bpy)(quin)2 complex was synthesized by protonolysis of Cr(bpy)[N(SiMe3)2]2 and characterized by single-crystal X-ray diffraction.