Mechanisms of imidazoline I2 receptor agonist-induced antinociception in rats: involvement of monoaminergic neurotransmission

Br J Pharmacol. 2018 May;175(9):1519-1534. doi: 10.1111/bph.14161. Epub 2018 Mar 23.

Abstract

Background and purpose: Although the antinociceptive efficacies of imidazoline I2 receptor agonists have been established, the exact post-receptor mechanisms remain unknown. This study tested the hypothesis that monoaminergic transmission is critical for I2 receptor agonist-induced antinociception.

Experimental approach: von Frey filaments were used to assess antinociceptive effects of two I2 receptor agonists, 2-BFI and CR4056 on chronic constriction injury (CCI)-induced neuropathic pain or complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. Rectal temperature was measured to assess hypothermic effects of 2-BFI. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg·kg-1 2-BFI (i.p.) from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. In each experiment, pharmacological mechanisms were investigated by combining 2-BFI or CR4056 with various pharmacological manipulations of the monoaminergic system including selective reuptake inhibition, monoamine depletion and monoamine receptor antagonism.

Key results: In the CCI model, selective reuptake inhibitors of 5-HT (fluoxetine) or noradrenaline (desipramine), but not dopamine (GBR12909), enhanced 2-BFI-induced antinociception. Selective depletion of 5-HT or noradrenaline almost abolished 2-BFI-induced antinociception. 5-HT1A , 5-HT2A and α1 -adrenoceptor antagonists, but not other monoaminergic antagonists, attenuated 2-BFI and CR4056-induced antinociception in CCI and/or CFA models. However, none of these monoamine receptor antagonists significantly altered 2-BFI-induced hypothermia or discriminative stimulus effects.

Conclusions and implications: Antinociception induced by I2 receptor agonists was mediated by serotonergic and noradrenergic mechanisms with 5-HT1A , 5-HT2A and α1 -adrenoceptor being particularly important. In contrast, the hypothermic and discriminative stimulus effects of I2 receptor agonists were mediated by distinct, independent mechanisms.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adrenergic alpha-1 Receptor Antagonists / pharmacology
  • Analgesics / pharmacology*
  • Animals
  • Biogenic Monoamines / metabolism*
  • Discrimination, Psychological / drug effects
  • Drug Interactions
  • Hypothermia, Induced
  • Imidazoles / pharmacology*
  • Imidazoline Receptors / agonists*
  • Male
  • Neurotransmitter Uptake Inhibitors / pharmacology
  • Pain Measurement / drug effects
  • Quinazolines / pharmacology*
  • Rats
  • Serotonin Antagonists / pharmacology
  • Synaptic Transmission / drug effects*

Substances

  • Adrenergic alpha-1 Receptor Antagonists
  • Analgesics
  • Biogenic Monoamines
  • CR4056
  • Imidazoles
  • Imidazoline Receptors
  • Neurotransmitter Uptake Inhibitors
  • Quinazolines
  • Serotonin Antagonists
  • imidazoline receptor 2