Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1989 Feb 15;264(5):2445-9.

Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination.

Author information

  • 1Institute for Chemical Research, Kyoto University, Japan.

Abstract

D-Amino acid aminotransferase was found in several thermophilic Bacillus species and purified to homogeneity from the best producer, Bacillus sp. YM-1, which was newly isolated from a sauna dust. The enzyme has a molecular weight of about 62,000 and consists of two subunits identical in molecular weight (30,000). It catalyzes transamination between various D-amino acids and alpha-keto acids, although the substrate specificity is narrower than the enzyme from the mesophile, Bacillus sphaericus (Yonaha, K., Misono, H., Yamamoto, T., and Soda, K. (1975) J. Biol. Chem. 250, 6983-6989). The Bacillus sp. YM-1 enzyme is most active at 60 degrees C and stable at high temperatures. Automated Edman degradation provided the N-terminal sequence of the first 20 amino acids, and carboxypeptidase Y digestion provided the C-terminal sequence of the last 3 amino acids. The amino acid sequence in the vicinity of the lysyl residue, Lys(Pxy), that binds pyridoxal 5'-phosphate was determined as Cys-Asp-Ile-Lys(Pxy)-Ser-Leu-Asn-Leu-Leu-Gly-Ala-Val-Leu-Ala-Lys- from the pyridoxyl peptide obtained by digestion with trypsin. The active site sequence is markedly different from those of L-amino acid aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes.

PMID:
2914916
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk