Atomically-precise colloidal nanoparticles of cerium dioxide

Nat Commun. 2017 Nov 13;8(1):1445. doi: 10.1038/s41467-017-01672-4.

Abstract

Synthesis of truly monodisperse nanoparticles and their structural characterization to atomic precision are important challenges in nanoscience. Success has recently been achieved for metal nanoparticles, particularly Au, with diameters up to 3 nm, the size regime referred to as nanoclusters. In contrast, families of atomically precise metal oxide nanoparticles are currently lacking, but would have a major impact since metal oxides are of widespread importance for their magnetic, catalytic and other properties. One such material is colloidal CeO2 (ceria), whose applications include catalysis, new energy technologies, photochemistry, and medicine, among others. Here we report a family of atomically precise ceria nanoclusters with ultra-small dimensions up to ~1.6 nm (~100 core atoms). X-ray crystallography confirms they have the fluorite structure of bulk CeO2, and identifies surface features, H+ binding sites, Ce3+ locations, and O vacancies on (100) facets. Monodisperse ceria nanoclusters now permit investigation of their properties as a function of exact size, surface morphology, and Ce3+:Ce4+ composition.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't