Room-Temperature Spin Polariton Diode Laser

Phys Rev Lett. 2017 Aug 11;119(6):067701. doi: 10.1103/PhysRevLett.119.067701. Epub 2017 Aug 10.

Abstract

A spin-polarized laser offers inherent control of the output circular polarization. We have investigated the output polarization characteristics of a bulk GaN-based microcavity polariton diode laser at room temperature with electrical injection of spin-polarized electrons via a FeCo/MgO spin injector. Polariton laser operation with a spin-polarized current is characterized by a threshold of ∼69 A/cm^{2} in the light-current characteristics, a significant reduction of the electroluminescence linewidth and blueshift of the emission peak. A degree of output circular polarization of ∼25% is recorded under remanent magnetization. A second threshold, due to conventional photon lasing, is observed at an injection of ∼7.2 kA/cm^{2}. The variation of output circular and linear polarization with spin-polarized injection current has been analyzed with the carrier and exciton rate equations and the Gross-Pitaevskii equations for the condensate and there is good agreement between measured and calculated data.