Elastic and dielectric properties of ferroelectric nanoparticles/bent-core nematic liquid crystal blend

Eur Phys J E Soft Matter. 2017 Sep;40(9):75. doi: 10.1140/epje/i2017-11564-x. Epub 2017 Sep 4.

Abstract

Bent-core liquid crystals present the first evidence of forming polar superstructures from achiral molecules. The nematic phase is the newest member of the bent-core family and turns out to be extremely interesting owing to its distinct features compared to its calamitic counterpart. Here the investigation of one achiral unsymmetrical 2-methyl-3-amino-benzoic acid (2,6-substituted toluene)-derived four-ring bent-core nematic (BCN) liquid crystals (11-2M-F) is presented after nanodispersion. Ferroelectric nanoparticles significantly affect the phase transition temperature, threshold voltage, dielectric permittivity, elastic constants and splay viscosity of the pristine BCN. In most bent-core nematic liquid crystals the bent elastic constant (K33) is usually lower than the splay elastic constant (K11) owing to the presence of short-range smectic-C-like correlations in the nematic phase. Thus the elastic anisotropy ([Formula: see text]) is usually negative in bent-core nematics unlike in rod-like nematic liquid crystals where K33 is always greater than K11. Here we report a short-core bent-shaped nematic liquid crystal whose negative elastic anisotropy was turned to positive by minute addition of ferroelectric nanoparticles.

Keywords: Soft Matter: Liquid crystals.