Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles

Environ Sci Pollut Res Int. 2017 Jul;24(19):16007-16018. doi: 10.1007/s11356-017-9174-3. Epub 2017 May 23.

Abstract

Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L-1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L-1 and after 27 h to 5 mg L-1 CuO NPs. As a result, 4-h treatment with 5 mg L-1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L-1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L-1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the "Threshold for Tolerance Model" with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.

Keywords: Accumulation kinetics; Hydrogen peroxide; Non-photochemical quenching; Photoprotection; Photosynthetic electron transport; Quantum yield; Stress defense.

MeSH terms

  • Chlorophyll
  • Copper / chemistry*
  • Hydrogen Peroxide
  • Nanoparticles*
  • Oxidative Stress
  • Photosynthesis
  • Photosystem II Protein Complex / physiology
  • Plant Leaves

Substances

  • Photosystem II Protein Complex
  • Chlorophyll
  • Copper
  • Hydrogen Peroxide