Hierarchal order in the formation of chloroplast division machinery in the red alga Cyanidioschyzon merolae

Commun Integr Biol. 2017 Feb 17;10(2):e1294298. doi: 10.1080/19420889.2017.1294298. eCollection 2017.

Abstract

Chloroplasts have evolved from a cyanobacterial endosymbiont and multiply by dividing. Chloroplast division is performed by constriction of the ring-like protein complex (the PD machinery), which forms at the division site. The PD machinery is composed of cyanobacteria-descended components such as FtsZ and eukaryote-derived proteins such as the dynamin-related protein, DRP5B. In the red alga Cyanidioschyzon merolae, FtsZ ring formation on the stromal side precedes PDR1 and DRP5B ring formation on the cytosolic side. In this study, we impaired FtsZ ring formation in C. merolae by overexpressing FtsZ just before FtsZ ring formation. As a result, PDR1 and DRP5B failed to localize at the chloroplast division site, suggesting that FtsZ ring formation is required for the PDR1 and DRP5B rings. We further found, by expressing a dominant negative form of DRP5B, that DRP5B ring formation begins on the nuclear side of the chloroplast division site. These findings provide insight into how the PD machinery forms in red algae.

Keywords: Cyanidioschyzon merolae; DRP5B; FtsZ; PDR1; Plastid division machinery; chloroplast division.

Publication types

  • Comment