Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries

J Oral Microbiol. 2017 Feb 8;9(1):1281562. doi: 10.1080/20002297.2017.1281562. eCollection 2017.

Abstract

An association between oral bacteria and atherosclerosis has been postulated. A limited number of studies have used 16S RNA gene sequencing-based metagenomics approaches to identify bacteria at the species level from atherosclerotic plaques in arterial walls. The objective of this study was to establish detailed oral microbiome profiles, at both genus and species level, of clinically healthy coronary and femoral artery tissues from patients with atherosclerosis. Tissue specimens were taken from clinically non-atherosclerotic areas of coronary or femoral arteries used for attachment of bypass grafts in 42 patients with atherosclerotic cardiovascular disease. Bacterial DNA was sequenced using the MiSeq platform, and sequence reads were screened in silico for nearly 600 oral species using the HOMINGS ProbeSeq species identification program. The number of sequence reads matched to species or genera were used for statistical analyses. A total of 230 and 118 species were detected in coronary and femoral arteries, respectively. Unidentified species detected by genus-specific probes consisted of 45 and 30 genera in coronary and in femoral artery tissues, respectively. Overall, 245 species belonging to 95 genera were detected in coronary and femoral arteries combined. The most abundant species were Porphyromonas gingivalis, Enterococcus faecalis, and Finegoldia magna based on species probes. Porphyromonas, Escherichia, Staphylococcus, Pseudomonas, and Streptococcus genera represented 88.5% mean relative abundance based on combined species and genus probe detections. Porphyromonas was significantly more abundant than Escherichia (i.e. 46.8% vs. 19.3%; p = 0.0005). This study provides insight into the presence and types of oral microbiome bacterial species found in clinically non-atherosclerotic arteries.

Keywords: HOMINGS; Oral microbiome; P. gingivalis; atherosclerosis; metagenomics.