Local clustering in scale-free networks with hidden variables

Phys Rev E. 2017 Feb;95(2-1):022307. doi: 10.1103/PhysRevE.95.022307. Epub 2017 Feb 14.

Abstract

We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ∈(2,3), so that the degrees have infinite variance. The natural cutoff h_{c} characterizes the largest degrees in the hidden variable models, and a structural cutoff h_{s} introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N, as a function of h_{s} and h_{c}. For scale-free networks with exponent 2<τ<3 and the default choices h_{s}∼N^{1/2} and h_{c}∼N^{1/(τ-1)} this gives C∼N^{2-τ}lnN for the universality class at hand. We characterize the extremely slow decay of C when τ≈2 and show that for τ=2.1, say, clustering starts to vanish only for networks as large as N=10^{9}.