Quickest Sequential Multiband Spectrum Sensing with Mixed Observations

IEEE Trans Signal Process. 2016 Nov 15;64(22):5861-5874. doi: 10.1109/TSP.2016.2602802. Epub 2016 Aug 24.

Abstract

Spectrum sensing is a key technology enabling the cognitive radio system. In this paper, the problem of how to quickly and accurately find an unoccupied channel from a large amount of potential channels is considered. The cognitive radio system under consideration is equipped with a narrow band sensor, hence it can only sense those potential channels in a sequential manner. In this scenario, we propose a novel two-stage mixed-observation sensing strategy. In the first stage, which is named as scanning stage, the sensor observes a linear combination of the signals from a pair of channels. The purpose of the scanning stage is to quickly identify a pair of channels such that at least one of them is highly likely to be unoccupied. In the second stage, which is called refinement stage, the sensor only observers the signal from one of those two channels identified from the first stage, and selects one of them as the unoccupied channel. The problem under this setup is an ordered two concatenated Markov stopping time problem. The optimal solution is solved using the tools from the multiple stopping time theory. It turns out that the optimal solution has a rather complex structure, hence a low complexity algorithm is proposed to facilitate the implementation. In the proposed low complexity algorithm, the cumulative sum test is adopted in the scanning stage and the sequential probability ratio test is adopted in the refinement stage. The performance of this low complexity algorithm is analyzed when the presence of unoccupied channels is rare. Numerical simulation results show that the proposed sensing strategy can significantly reduce the sensing time when the majority of potential channels are occupied.

Keywords: CUSUM; SPRT; multiple stopping times; quickest spectrum sensing; sequential analysis.