Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1989 Nov 15;264(32):19076-80.

Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation.

Author information

  • 1Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Sphingolipid metabolism was examined in human promyelocytic leukemia HL-60 cells. Differentiation of HL-60 cells with 1 alpha, 25-dihydroxyvitamin D3 (vitamin D3; 100 nM) was accompanied by sphingomyelin turnover. Maximum turnover of [3H]choline-labeled sphingomyelin occurred 2 h following vitamin D3 treatment, with sphingomyelin levels decreasing to 77 +/- 6% of control and returning to base-line levels by 4 h. Ceramide and phosphorylcholine were concomitantly generated. Ceramide mass levels increased by 55% at 2 h following vitamin D3 treatment and returned to base-line levels by 4 h. The amount of phosphorylcholine produced equaled the amount of sphingomyelin hydrolyzed, suggesting the involvement of a sphingomyelinase. Vitamin D3 treatment resulted in a 90% increase in the activity of a neutral sphingomyelinase from HL-60 cells. The inferred role of sphingomyelin hydrolysis in the induction of cell differentiation was investigated using an exogenous sphingomyelinase. When a bacterial sphingomyelinase was added at concentrations that caused a similar degree of sphingomyelin hydrolysis as 100 nM vitamin D3, it enhanced the ability of subthreshold levels of vitamin D3 to induce HL-60 cell differentiation. This study demonstrates the existence of a "sphingomyelin cycle" in human cells. Such sphingolipid cycles (Hannun, Y., and Bell, R. (1989) Science 243, 500-507) may function in a signal transduction pathway and in cellular differentiation.

PMID:
2808413
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk