Spectral-distortion-free light extraction from organic light-emitting diodes using nanoscale photonic crystal

Nanotechnology. 2017 Jan 27;28(4):045301. doi: 10.1088/1361-6528/28/4/045301. Epub 2016 Dec 16.

Abstract

Despite their generally good performance, photonic crystal (PC)-based organic light-emitting diodes (OLEDs) encounter a serious spectral distortion problem. In this study, we obtained spectral-distortion-free PC-based OLEDs by lowering the pitch (period of the PC) to less than a half the emission wavelength, using a simple and scalable nanoscale process of laser interference lithography. The demonstrated OLEDs with 200 nm pitch-size nanoscale periodic hole arrays exhibited negligible changes in the Internal Commission on Illumination 1931 color coordinate of Δ (0.0104, 0.0078) and a peak wavelength of Δ0 nm (relative to the reference), while maintaining the function of the internal light extraction layer, manifested as a 23% enhancement of the external quantum efficiency (EQE). The enhancement of the EQE reached 85% after incorporating a micro-lens array. The improved light extraction, spectral-distortion-free characteristic, and excellent color stability over a broad range of viewing angles were successfully derived by performing finite difference time domain simulations.