Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1989 Oct 2;985(1):81-9.

Specificity and kinetics of hexose transport in Trypanosoma brucei.

Author information

  • 1Department of Biochemistry, University of Bath, U.K.


Transport of 6-deoxy-D-glucose was studied in Trypanosoma brucei in order to characterise the kinetics of hexose transport in this organism using a nonphosphorylated sugar. Kinetic parameters for efflux and entry, measured using zero-trans and equilibrium exchange protocols, indicate that the transporter is probably kinetically symmetrical. Comparison of the kinetic constants of D-glucose metabolism with those for 6-deoxy-D-glucose transport shows that transport across the plasma membrane is likely to be the rate-limiting step of glucose utilisation. The transport rate is nevertheless very fast and 6-deoxy-D-glucose, at concentrations below Km, enters the cells with a half filling time of less than 2 s at 20 degrees C. Thus the high metabolic capacity of these organisms is matched by a high transport rate. The structural requirements for the trypanosome hexose transporter were explored by measuring inhibition constants (Ki) for a range of D-glucose analogues including fluoro and deoxy sugars as well as epimeric hexoses. The relative affinities shown by these analogues indicated H-bonds from the carrier to the C-3, C-4 and C-5 hydroxyl oxygens and from the C-1 and C-3 hydroxyl hydrogens to the binding site. Hydrophobic interactions are likely at the C-2 and C-6 regions of the glucose molecule. Spatial constraints appear to occur around C-4 indicating that the transport site at this position is not freely open to the external solution as is the case with the mammalian hexose transporter. However, the trypanosome transporter appears to accept D-fructose but the common mammalian (erythrocyte type) hexose transporter does not.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk