Combinatory approach of methacrylated alginate and acid monomers for concrete applications

Carbohydr Polym. 2017 Jan 2:155:448-455. doi: 10.1016/j.carbpol.2016.08.102. Epub 2016 Sep 2.

Abstract

Polysaccharides, and especially alginate, can be useful for self-healing of cracks in concrete. Instead of weak electrostatic bonds present within calcium alginate, covalent bonds, by methacrylation of the polysaccharides, will result in mechanically stronger superabsorbent polymers (SAPs). These methacrylated alginate chains as backbone are combined with two acrylic monomers in a varying molar fraction. These SAPs show a moisture uptake capacity up to 110% their own weight at a relative humidity of 95%, with a negligible hysteresis. The swelling capacity increased (up to 246 times its own weight) with a decreasing acrylic acid/2 acrylamido-2-methylpropane sulfonic acid ratio. The SAPs also showed a thermal stability up to 200°C. Interestingly, the SAP composed of alginate and acrylic acid exerted a very limited decrease in compressive strength (up to 7% with addition of 1wt% SAP) rendering this material interesting for the envisaged self-healing application.

Keywords: Alginate; Compressive strength; Concrete; Polysaccharide; Self-healing; Swelling potential.