An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State

J Mol Biol. 2016 Nov 6;428(22):4503-4519. doi: 10.1016/j.jmb.2016.09.016. Epub 2016 Sep 23.

Abstract

The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials.

Keywords: E. faecium; LiaR; X-ray; daptomycin resistance; response regulator.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptation, Biological
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Crystallography, X-Ray
  • DNA, Bacterial / metabolism
  • Daptomycin / pharmacology*
  • Drug Resistance, Bacterial*
  • Enterococcus faecium / drug effects*
  • Enterococcus faecium / genetics
  • Gene Expression Regulation, Bacterial
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Mutant Proteins / chemistry
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism
  • Mutation*
  • Operon
  • Phosphorylation
  • Promoter Regions, Genetic
  • Protein Binding
  • Protein Conformation
  • Protein Multimerization
  • Protein Processing, Post-Translational
  • Transcription Factors / chemistry
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcription, Genetic

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • DNA, Bacterial
  • Mutant Proteins
  • Transcription Factors
  • Daptomycin