Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa

Anim Reprod Sci. 2016 Oct:173:18-23. doi: 10.1016/j.anireprosci.2016.08.004. Epub 2016 Aug 11.

Abstract

In the warm months the function of the spermatozoa can be affected by the temperature of the reproductive tract of the female exposed to hyperthermic conditions. The aim of this study was to evaluate the impact of heat stress on sperm parameters in an in vitro model and to determine if there were seasonal effects on sperm heat tolerance. Sperm samples from 32 New Zealand White rabbits were collected in two seasons and incubated at scrotal (32.5°C), body (37°C) or hyperthermic (42°C) temperatures for 3h. Sperm viability and morphology were evaluated using nigrosin-eosin staining. Motility and metabolic activity parameters were determined using computer-assisted sperm analysis and the QBlue cell viability test, respectively. The incubation of spermatozoa at 42°C decreased (P<0.05) the mean values of total motility, curvilinear (VCL) and mean velocity (VAP) as well as the metabolic activity with respect to the incubation at 32.5°C and 37°C. No seasonal effects were observed except for the highest percentages of bent and coiled tails in the cold season, and the highest mean values of VCL, linear velocity and VAP in the warm season (P<0.01). The interaction between in vitro heat stress and season was significant for metabolic activity (P=0.02). Our results suggest that rabbit spermatozoa parameters are largely modified by a short exposure to hyperthermic conditions, in terms of metabolic activity and motility parameters. Thus, a short exposure of spermatozoa to an environment of 42°C in temperature for only 3h may compromise sperm functionality. Additionally, sperm metabolic activity is influenced by season.

Keywords: Heat stress; Hyperthermia; Rabbit; Sperm.

MeSH terms

  • Animals
  • Body Temperature
  • Cell Survival
  • Energy Metabolism / physiology*
  • Hot Temperature*
  • Male
  • Rabbits / physiology*
  • Seasons
  • Sperm Motility / physiology*