Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae

Genome Biol Evol. 2016 Aug 29;8(8):2505-19. doi: 10.1093/gbe/evw173.

Abstract

Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues.

Keywords: Pteridaceae; RNA editing; group II introns; intron loss; intron transfer; monilophytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Evolution, Molecular*
  • Genes, Mitochondrial*
  • Genes, Plant*
  • Introns*
  • Phylogeny
  • Pteridaceae / classification
  • Pteridaceae / genetics*
  • RNA Editing*