Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1989 Jul 25;264(21):12737-43.

Pyruvoyl-dependent histidine decarboxylase. Active site structure and mechanistic analysis.

Author information

  • 1Department of Chemistry and Clayton Foundation Biochemical Institute, University of Texas, Austin 78712.

Abstract

The structure of the pyruvoyl-dependent histidine decarboxylase has been refined to 2.5 A resolution by the methods of x-ray crystallography from crystals grown at pH 4.8, where the enzyme is optimally active. Models of the active site with and without the bound substrate analog, histidine methyl ester (HisOMe), or the product, histamine, have been produced. Comparison of native and ligand-bound structures reveals no widespread differences in conformation but does reveal motion of a few key residues (Tyr-62', Ile-59', Ser-81) upon binding of HisOMe in the active site. The HisOMe binds with the appropriate alpha-carbon-carbon bond oriented as required to facilitate the formation of the transition state. The binding site contains two pockets, one for the imidazole group, and another for the -COOMe group. In the imidazole pocket, the imidazolium group forms hydrogen bonds with two neighboring carboxylates, Asp-63' and the carboxyl terminus of the beta chain, Ser-81. Hydrophobic contacts are also observed. The carboxylate pocket is predominantly hydrophobic as predicted by Alston and Abeles (Alston, T. A., and Abeles, R. H. (1987) Biochemistry 26,4082-4085), but includes one carboxyl group, that of Glu-197, about 3.5 A from the substrate carboxylate. If Glu-197 is protonated under these conditions, it could serve as the proton donor following decarboxylation; if it is ionized under these conditions, its carboxylate group is appropriately placed to enhance the lability of the substrate carboxylate ion by providing a "push" in promoting the flow of electrons that results in decarboxylation. These and other structural features of the binding complex are discussed as they relate to a proposed mechanism of decarboxylation.

PMID:
2745463
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk