k-core percolation on complex networks: Comparing random, localized, and targeted attacks

Phys Rev E. 2016 Jun;93(6):062302. doi: 10.1103/PhysRevE.93.062302. Epub 2016 Jun 6.

Abstract

The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation in which a node fails when it becomes disconnected from the giant component. Here we study its generalization, k-core percolation, in which a node fails when it loses connection to a threshold k number of neighbors. We study and compare analytically and by numerical simulations of k-core percolation the stability of networks under random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA exerts the greatest damage to the core structure of a network. We also find that for Erdős-Rényi (ER) networks, LA and RA exert equal damage to the core structure, whereas for scale-free (SF) networks, LA exerts much more damage than RA does to the core structure.

Publication types

  • Research Support, Non-U.S. Gov't