Densely-tiled metal-insulator-metal metamaterial resonators with quasi- monochromatic thermal emission

Opt Express. 2016 Jun 13;24(12):12803-11. doi: 10.1364/OE.24.012803.

Abstract

Metal-insulator-metal metamaterial thermal emitters strongly radiate at multiple resonant wavelengths. The fundamental mode, whose wavelength is the longest among resonances, is generally utilized for selective emission. In this paper, we show that parasitic modes at shorter wavelengths are suppressed by newly employed densely-tiled resonators, and that the suppression enables quasi-monochromatic thermal emission. The second-order harmonics, which is excited at half the fundamental wavelength in conventional emitters, shifts toward shorter wavelength. The blue-shift reduces the amplitude of the second-order emission by taking a distance from the Wien wavelength. Other parasitic modes are eliminated by the small spacing between resonators. The densely-tiled resonators are fabricated, and the measured emission spectra agree well with numerical simulations. The methodology presented here for the suppression of parasitic modes adds flexibility to metamaterial thermal emitters.