Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

PLoS Comput Biol. 2016 Jun 23;12(6):e1004985. doi: 10.1371/journal.pcbi.1004985. eCollection 2016 Jun.

Abstract

Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Archaea / genetics*
  • Bacteria / genetics*
  • Computational Biology / methods*
  • Evolution, Molecular
  • Gene Transfer, Horizontal / genetics*
  • Genome, Archaeal / genetics*
  • Genome, Bacterial / genetics*
  • Phylogeny