Spatial and temporal influences on the physiological condition of invasive silver carp

Conserv Physiol. 2013 Jul 11;1(1):cot017. doi: 10.1093/conphys/cot017. eCollection 2013.

Abstract

We quantified nutritional and stress parameters (alkaline phosphatase, cholesterol, protein, triglycerides, cortisol, and glucose) in invasive silver carp (Hypophthalmichthys molitrix) inhabiting four large rivers throughout three distinct time periods in the Midwestern USA. Examining the basic biology and ecology of an invasive species is crucial to gain an understanding of the interaction between an organism and its environment. Analysis of the physiological condition of wild-caught silver carp across broad spatial and temporal scales is essential because stress and nutritional parameters can link individuals to their habitats and vary among populations across environments. During each time period, we collected blood samples from individual silver carp in the Illinois River and portions of the Mississippi, Ohio, and Wabash rivers in Illinois. We tested for relationships between silver carp nutrition and stress across rivers, reaches within rivers, and time periods. Principal component analyses separated physiological parameters into a stress component (cortisol and glucose) and two nutritional components representative of short-term feeding (alkaline phosphatase, protein, and triglycerides) and body energy reserves (cholesterol and protein). Akaike's information criterion suggested that time period had the greatest influence on stress. Stress levels were consistent in all four rivers, and declined across time periods. Akaike's information criterion also suggested that interactions of time period and river had the greatest influence on short-term feeding and body energy reserves. There was no specific pattern across time periods within each river, nor was there a pattern across rivers. Our results provide a better understanding of nutritional and stress conditions in invasive silver carp across a broad landscape and temporal scale, with implications for managing and predicting the spread of this species.

Keywords: Invasive species; landscape; macrophysiology; nutrition; stress.