MiR-1244 sensitizes the resistance of non-small cell lung cancer A549 cell to cisplatin

Cancer Cell Int. 2016 Apr 12:16:30. doi: 10.1186/s12935-016-0305-6. eCollection 2016.

Abstract

Background: Cisplatin (DDP)-based chemotherapy is the mainstay of first-line therapy for lung cancer. However, their efficacy is often limited by the existence or development of chemoresistance. The aim of this study was to find and investigate the function of miRNAs in cisplatin (DDP)-resistant non-small cell lung cancer (NSCLC) A549 cell.

Methods: Quantitative real-time PCR assay was employed to compare the differences of miRNA expression in both cisplatin-resistant A549 (A549/DDP) cell and the parental A549 cell. The dysregulated miRNAs were then corrected by transfecting oligonucleotides into A549/DDP cells. The cellular sensitivity to cisplatin, cell apoptosis and migration were conducted by MTT, flow cytometry and cell wound healing assay, respectively.

Results: Both miR-589 and miR-1244 were significantly down-regulated in A549/DDP cell compared to the parental A549, while the expression of miR-182 and miR-224 were increased in A549/DDP cell (P < 0.05). Importantly, transfection of the cisplatin-resistant cells with either miR-589 or miR-1244 resulted in an increased sensitivity to cisplatin, indicating that the dysregulated miRNA may play an important role in chemotherapy resistance in cancer cell. The rescued expression of miRNA also reduced cell invasion and increased apoptosis of A549/DDP cell.

Conclusion: The study indicates a crucial role of miR-1244 in the progress of cisplatin resistance of A549. Further understanding of miR-1244-mediated signaling pathways may promote the clinical use of miR-1244 in lung cancer therapy.

Keywords: Cisplatin-resistance; Non-small cell lung cancer; Target therapy; microRNA.