Stress-induced endocytosis and degradation of epidermal growth factor receptor are two independent processes

Cancer Cell Int. 2016 Mar 31:16:25. doi: 10.1186/s12935-016-0301-x. eCollection 2016.

Abstract

Background: Epidermal growth factor receptor (EGFR) is an important oncogenic protein in multiple types of cancer. Endocytosis and degradation of epidermal growth factor receptor (EGFR) are two key steps for down-regulation of cell surface level of EGFR and modulation of EGFR signaling. Stress conditions induce ligand-independent endocytosis and degradation of EGFR. However, it is not clear whether stress-induced endocytosis and degradation are consequential or two independent events.

Methods: Endocytosis and degradation of EGFR in response to stress treatment and effects of the p38 inhibitor, the Caspase-3 inhibitor and the proteasomal inhibitor in cervical cancer HeLa cells were determined using immunoblotting and immunofluorescent staining assays.

Results: Stress conditions, such as protein biosynthesis inhibition, UV light irradiation, and hyper-osmosis, induced both ligand-independent endocytosis and degradation of EGFR. Stress-induced endocytosis of EGFR relies on p38 kinase activity, while stress-induced degradation of EGFR is catalyzed by Caspase-3 activity. Inhibiting p38 kinase impairs only the endocytosis but not the degradation, while inhibiting Caspase-3 results in the opposite effect to inhibiting p38. Furthermore, proteasomal activity is required for stress-induced degradation of EGFR and cell death, but not for endocytosis.

Conclusions: The results indicate that stress-induced endocytosis and degradation are two independent events and suggest stress signaling may utilize a double-secure mechanism to down-regulate cell surface EGFR in cancer cells.

Keywords: Caspase; Degradation; EGFR; Endocytosis; Stress; p38.