Control and Monitoring of Codling Moth (Lepidoptera: Tortricidae) in Walnut Orchards Treated With Novel High-Load, Low-Density "Meso" Dispensers of Sex Pheromone and Pear Ester

Environ Entomol. 2016 Jun 1;45(3):700-707. doi: 10.1093/ee/nvw017.

Abstract

Low-density per ha "meso" dispensers loaded with pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone alone for mating disruption control in walnut orchards receiving no insecticide sprays. Meso dispensers loaded with codlemone alone (Ph meso) were applied at 50 ha-1 and compared with mesos combining codlemone and pear ester (Ph + PE meso) at 25 and 50 ha-1. Various lures containing pear ester (PE), Ph-PE combo, and an experimental codlemone plus (E)-4,8-dimethyl-1,3,7-nonatriene lure were tested alone and with acetic acid (AA) lures for moth capture efficacy. Male moth capture in pheromone traps was significantly reduced by 88% in Ph meso plots and 96% in Ph + PE meso plots versus control plots. Moth capture in Ph-PE combo traps was significantly reduced for both sexes in all meso plots. Harvest damage by both the codling moth and the secondary pest, navel orangeworm, Amyelois transitella (Walker), was significantly lower in all meso treatment plots compared with damage in control plots. Nut injury level with the Ph + PE meso treatment (50 ha-1) was significantly lower than in Ph meso plots for both codling moth and combined pest injury. Regression analysis suggested that nut infestation levels by navel orangeworm were influenced by codling moth levels. In all meso plots, the most effective lures attracting both codling moth sexes were PE & AA or Ph-PE combo & AA. Demonstrated disruption and control efficacy of these pheromone plus PE-meso dispensers applied at low densities supports development of the meso dispenser tactic for practical pest management use in walnut orchards with inherent low planting densities.

Keywords: Amyelois transitella; Cydia pomonella; mating disruption; monitoring; walnut.