Systems genetics of wood formation

Curr Opin Plant Biol. 2016 Apr:30:94-100. doi: 10.1016/j.pbi.2016.02.007. Epub 2016 Mar 1.

Abstract

In woody plants, xylogenesis is an exceptionally strong carbon sink requiring robust transcriptional control and dynamic coordination of cellular and metabolic processes directing carbon allocation and partitioning into secondary cell wall biosynthesis. As a biological process, wood formation is an excellent candidate for systems modeling due to the strong correlation patterns and interconnectedness observed for transcriptional and metabolic component traits contributing to complex phenotypes such as cell wall chemistry and ultrastructure. Genetic variation in undomesticated tree populations provides abundant perturbation of systems components, adding another dimension to plant systems biology (besides spatial and temporal variation). High-throughput analysis of molecular component traits in adult trees has provided the first insights into the systems genetics of wood, an important renewable feedstock for biomaterials and bioenergy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Regulation, Plant / genetics
  • Gene Expression Regulation, Plant / physiology
  • Synthetic Biology / methods
  • Trees / genetics*
  • Trees / growth & development
  • Trees / metabolism*
  • Wood / genetics*
  • Wood / growth & development
  • Wood / metabolism*