Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1951-7. doi: 10.1021/acsami.5b10160. Epub 2016 Jan 14.

Abstract

The demand for simple, sensitive, affordable, and selective DNA biosensors is ubiquitous, due to the important role that DNA detection performs in the areas of disease diagnostics, environment monitoring, and food safety. A novel application of carboxylic carbon quantum dots (cCQD) is highlighted in this study. Herein, cCQD function as a nanoquencher in the detection of nucleic acid based on a homogeneous fluorescent assay. To that purpose, the performance of two types of cCQD, namely, citric acid QD and malic acid QD, is evaluated. The principle behind the sensing of nucleic acid lies in the different propensity of single-stranded DNA and double-stranded DNA to adsorb onto the surface of cCQD. For both types of cCQD, a superior range of detection of at least 3 orders of magnitude is achieved, and the potential to distinguish single-base mismatch is also exhibited. These findings are anticipated to provide valuable insights on the employment of cCQD for the fabrication of future DNA biosensors.

Keywords: biosensor; carbon quantum dot; carboxylic groups; fluorescence; nucleic acid; quenching.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Carbon / chemistry*
  • Carboxylic Acids / chemistry*
  • DNA / analysis*
  • Fluorescent Dyes / chemistry
  • Photoelectron Spectroscopy
  • Quantum Dots / chemistry*
  • Spectrometry, Fluorescence
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Carboxylic Acids
  • Fluorescent Dyes
  • Carbon
  • DNA