A Study on the Adhesion Properties of Reactive Sputtered Molybdenum Thin Films with Nitrogen Gas on Polyimide Substrate as a Cu Barrier Layer

J Nanosci Nanotechnol. 2015 Nov;15(11):8743-8. doi: 10.1166/jnn.2015.11493.

Abstract

NiCr, Mo, and Mo-N thin copper diffusion barrier films are deposited on 200 um thick polyimide films spin-coated on glass substrates by dc reactive magnetron sputtering. The adhesion forces for three systems are measured by micro-scratch test analysis depending on oxygen plasma pretreatment, sputtering power density, moisture contents, and post annealing treatment. The values of adhesion forces for the three systems are linearly proportional to the oxygen plasma treatment time. As deposition power density increases, measured adhesion forces also increase. The existence of moisture adsorbed in the polymer substrate prior to initiating the sputtering process significantly reduces the adhesion force for all systems. Post annealing treatment at 150 degrees C for 12 hours after sputtering also deteriorates the adhesion between the barrier films and polymer substrate. Auger electron spectroscopy reveals that adhesion forces are significantly dependent on the types of compounds formed at the barrier layer/polymer interface. Changes in the adhesion properties of the MoN system as a function of the nitrogen content are explained in terms of the mechanical stability of the MoN(x)O(y) interface layer on the polymer substrate.

Publication types

  • Research Support, Non-U.S. Gov't