Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils

Pol J Microbiol. 2015;64(3):227-39.

Abstract

The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • Bacteria / metabolism*
  • Culture Media / metabolism*
  • Fermentation
  • Polymers / metabolism*
  • Rhizosphere
  • Soil Microbiology*

Substances

  • Culture Media
  • Polymers
  • poly(hydroxyethanoate)