Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Neurosci. 1989;11(2):118-31.

Expression and modulation of K+ currents in oligodendrocytes: possible role in myelinogenesis.

Author information

  • 1Department of Neurology, University of Chicago, Ill 60637.

Abstract

We have used whole-cell and single-channel recording techniques to investigate the electrophysiological properties of cultured ovine oligodendrocytes (OLGs). Our studies have led to the following conclusions. (1) Cultured mature OLGs express a variety of voltage-dependent K+ conductances including an outward current that consists of a transient component and a steady-state component, as well as an inwardly rectifying K+ current. (2) These conductances are expressed sequentially as a function of development in culture. The inwardly rectifying K+ current appears later than the outward current. (3) Although process extension may influence the expression of the ion channels, the majority of the K+ channels are located in the soma of OLGs, probably concentrated in the basal plasma membrane. (4) Finally, the activation of K+ channels in OLGs can be inhibited by two distinct second messengers, cAMP acting through protein kinase A and diacylglycerol acting through protein kinase C, the effects of which perhaps converge at the level of a common phosphorylated enzyme or regulatory protein. Both cAMP and diacylglycerol have been implicated as factors important in controlling the induction of a myelinogenic metabolism associated with OLG substratum attachment. Thus, membrane ion channels may provide an important intermediate step linking cellular substratum attachment to the eventual induction of myelinogenesis.

PMID:
2663420
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk