Isothermal Amplification of Nucleic Acids

Chem Rev. 2015 Nov 25;115(22):12491-545. doi: 10.1021/acs.chemrev.5b00428. Epub 2015 Nov 9.

Abstract

Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Microfluidic Analytical Techniques
  • Nanotechnology
  • Nucleic Acid Amplification Techniques*
  • Nucleic Acids / analysis*
  • Nucleic Acids / biosynthesis*
  • Nucleic Acids / genetics
  • Temperature*

Substances

  • Nucleic Acids