Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas

Plant Cell. 2015 Oct;27(10):2727-42. doi: 10.1105/tpc.15.00400. Epub 2015 Oct 16.

Abstract

We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of ∼2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle*
  • Chlamydomonas reinhardtii / cytology
  • Chlamydomonas reinhardtii / enzymology*
  • Chlamydomonas reinhardtii / genetics
  • Chlamydomonas reinhardtii / physiology
  • Circadian Rhythm / genetics*
  • Cyclin-Dependent Kinases / genetics
  • Cyclin-Dependent Kinases / metabolism*
  • DNA Replication / genetics*
  • G1 Phase / genetics
  • Mutation
  • Phenotype
  • Photosynthesis

Substances

  • Cyclin-Dependent Kinases