Effect of collagen crosslinking on collagen-water interactions (a DSC investigation)

Matrix. 1989;9(6):443-50. doi: 10.1016/s0934-8832(11)80013-2.

Abstract

The effect of collagen cross-linking state on the collagen-water interaction was studied, using Differential Scanning Calorimetry (DSC) which allows the determination of unfreezable water, the variation of enthalpy (delta H) and temperatures of denaturation of collagen to gelatin transition. DSC was performed on intramuscular connective tissue purified with trypsin (control C), depolymerized with penicillamin (P), and reduced with borohydride (B); samples were adjusted with different water contents. For the three tissues, unfreezable water (Wu) and denaturation enthalpy change (delta H) increased with increasing moisture level (Wt); whereas, maximum denaturation temperature (phi M) decreased. The ability of this calorimetric method of investigation to characterize the collagen crosslink state is discussed: maximum limit values of delta H and of Wu decreased significantly with increasing collagen cross-linking degree. Minimum Wt necessary to reach the maximum delta H decreased with crosslinking degree. Likewise significantly different limit values of unfreezable water Wu were reached for smaller Wt the greater the crosslinking of collagen. These results show that the less connective tissues were cross-linked, the more they could bind water. They also demonstrated that the water of collagen hydration can be classified into four states, whose limits vary according to the degree of crosslinking.

MeSH terms

  • Animals
  • Cattle
  • Collagen / analysis*
  • Male
  • Muscles / analysis*

Substances

  • Collagen