Cell injury, retrodifferentiation and the cancer treatment paradox

Tumour Biol. 2015 Sep;36(10):7365-74. doi: 10.1007/s13277-015-3981-2. Epub 2015 Sep 7.

Abstract

This "opinion article" is an attempt to take an overview of some significant changes that have happened in our understanding of cancer status during the last half century and its evolution under the progressive influence of molecular biology. As an active worker in cancer research and developmental biology during most of this period, I would like to comment briefly on these changes and to give my critical appreciation of their outcome as it affects our knowledge of cancer development as well as the current treatment of the disease. A recall of my own contribution to the subject is also included. Two subjects are particularly developed: cell injury and cell-killing therapies. Cell injury, whatever its origin, has acquired the status of a pivotal event for the initiation of cancer emergence. It is postulated that cell injury, a potential case of cellular death, may also be the origin of a process of stepwise cell reversion (retrodifferentiation or retroprogrammation) leading, by division, mature or stem cells to progressive immaturity. The genetic instability and mutational changes that accompanies this process of cell injury and rejuvenation put normal cells in a status favourable to neoplastic transformation or may evolve cancer cells toward clones with higher malignant potentiality. Thus, cell injury suggests lifestyle as the major upstream initiator of cancer development although this not exclude randomness as an unavoidable contributor to the disease. Cell-killing agents (mainly cytotoxic drugs and radiotherapy) are currently used to treat cancer. At the same time, it is agreed that agents with high cell injury potential (ultraviolet light, ionising radiations, tobacco, environmental pollutants, etc.) contribute to the emergence of malignant tumours. This represents a real paradox. In spite of the progress accomplished in cancer survival, one is tempted to suggest that we have very few chances of really cure cancer as long as we continue to treat malignancies with cell-killing therapies. Indeed, the absence of alternatives to such treatments justifies the pursuit of current procedures of cancer care. But, this should be, precisely, an urgent stimulus to explore other therapeutic approaches. Tumour reversion, immunotherapy, stem cell management and genomic analysis of embryo-foetal development could be, among others, appropriated candidates for future active research.

Keywords: Cell injury; Cell killing therapies; Foetal characteristics of cancer; Genomic analysis; Retrodifferentiation; Steam cells and cancer stem cells; Tumour heterogeneity.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cell Transformation, Neoplastic / pathology*
  • Homeostasis
  • Humans
  • Neoplasms / pathology*
  • Neoplasms / therapy*