Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions

PLoS One. 2015 Aug 28;10(8):e0137021. doi: 10.1371/journal.pone.0137021. eCollection 2015.

Abstract

The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (<0.18) and high area under the curve scores (AUC >0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal*
  • Conservation of Natural Resources*
  • Female
  • Galliformes*
  • Male
  • Models, Statistical
  • Natural Resources
  • Probability

Grants and funding

This work was supported by funding from USDA-AFRI (United States Department of Agriculture - Agriculture and Food Research Initiative) Managed Ecosystems grant #2010-85101-20457 and by the Oklahoma Agricultural Experiment Station.