Send to:

Choose Destination
See comment in PubMed Commons below
Neuron. 1989 Jan;2(1):1031-41.

A family of calcium-dependent potassium channels from rat brain.

Author information

  • 1Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254.


By incorporating rat brain plasma membrane vesicles into planar lipid bilayers, we have found and characterized four types of Ca2(+)-activated K+ channels. The unitary conductances of these channels are 242 +/- 14 pS, 236 +/- 16 pS, 135 +/- 10 pS, and 76 +/- 6 pS in symmetrical 150 mM KCI buffers. These channels share a number of properties. They are all activated by depolarizing voltages, activated by micromolar concentrations of internal Ca2+ with a Hill coefficient for Ca2+ activation of between 2 and 3, noninactivating under our assay conditions, blocked by low millimolar concentrations of TEA from the outside, apamin-insensitive, and very selective for K+ over Na+ and Cl-. Three of the four channels are also blocked by nanomolar concentrations of charybdotoxin. One of the high conductance Ca2(+)-activated K+ channels is novel in that it is not blocked by charybdotoxin and exhibits gating kinetics highlighted by long closed times and long open times. This family of closely related Ca2(+)-activated K+ channels may share structural domains underlying particular functions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk