Purity of the single frequency mode of a hybrid semiconductor-fiber laser

Opt Express. 2015 Jun 15;23(12):16084-95. doi: 10.1364/OE.23.016084.

Abstract

The penalty of extending the cavity length of a laser diode when seeking a linewidth reduction is normally revealed by poor side mode suppression, which prevents the laser from operating purely in a single mode of the external cavity. A hybrid laser, based on a C-band semiconductor optical amplifier combined with a long erbium doped fiber external cavity, is carefully engineered to operate with high spectral purity and outstanding stability. For the first time, a side-mode suppression ratio of ≥42 dB, measured at a resolution of 1.16 pm (149 MHz) at all intra-cavity powers above the lasing threshold, is reported. The output power at the peak lasing wavelength is 13.3 dBm. Also, the ability to lock such a hybrid laser to a particular external-cavity mode is realized for the first time. Excluding the effect of mechanical and thermal drifts on the cavity length, the long-term frequency stability is demonstrated to be within ± 11 Hz while the long-term linewidth is 2.26 kHz, measured using the self-beating technique under free running conditions.