Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays

Nanotechnology. 2015 Jul 3;26(26):265203. doi: 10.1088/0957-4484/26/26/265203. Epub 2015 Jun 11.

Abstract

We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

Publication types

  • Research Support, Non-U.S. Gov't