Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products

Food Chem. 2008 May 15;108(2):571-81. doi: 10.1016/j.foodchem.2007.11.013. Epub 2007 Nov 17.

Abstract

Food allergy has become a public health problem that continues to challenge both the consumer and the food industry. The objectives of this study were to evaluate the reduction of immunoreactivity by natural and induced fermentation of soybean meal (SBM) with Lactobacillus plantarum, Bifidobacterium lactis, Saccharomyces cereviseae, and to assess the effect on amino acid concentration. Immunoreactivity of commercially available fermented soybean products and ingredients was also evaluated. ELISA and western blot were used to measure IgE immunoreactivity using plasma from soy sensitive individuals. Commercial soy products included tempeh, miso and yogurt. Fermented SBM showed reduced immunoreactivity to human plasma, particularly if proteins were <20kDa. S. cereviseae and naturally fermented SBM showed the highest reduction in IgE immunoreactivity, up to 89% and 88%, respectively, against human pooled plasma. When SBM was subjected to fermentation with different microorganisms, most of the total amino acids increased significantly (p<0.05) and only few of them suffered a decrease depending on the type of fermentation. All commercial soy containing products tested showed very low immunoreactivity. Thus, fermentation can decrease soy immunoreactivity and can be optimized to develop nutritious hypoallergenic soy products. However, the clinical relevance of these findings needs to be determined by human challenge studies.

Keywords: Glycine max; IgE immunoreactivity; Soybean; fermentation, microbial proteolysis, hypoallergenic foods, antigenicity; protien, food allergy.