Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1989 Dec;9(12):4287-302.

Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus.

Author information

  • 1Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132.


We studied the physiological orientation biases of over 700 relay cells in the cat's dorsal lateral geniculate nucleus (LGNd). Relay cells were sampled at regular intervals along horizontally as well as vertically oriented electrode penetrations in a fashion analogous to that used previously in studies of visual cortex (Hubel and Wiesel, 1962). The strengths of the orientation biases and the distributions of the preferred orientations were determined for different classes of relay cells, relay cells in different layers of the LGNd, and relay cells subserving different parts of the visual field. We find that, at the population level, LGNd cells exhibit about the same degree of orientation bias as do the retinal ganglion cells providing their inputs (see also Soodak et al., 1987). Also, as in the retina (Levick and Thibos, 1982; Leventhal and Schall, 1983), most LGNd cells tend to prefer stimuli oriented radially, i.e., parallel to the line connecting their receptive fields to the area centralis projection. However, the radial bias in the LGNd is weaker than in the retina. Moreover, there is a relative overrepresentation of cells preferring tangentially oriented stimuli in the LGNd but not in the retina. As a result of the overrepresentation of cells preferring radial and tangential stimuli, the overall distribution of preferred orientations varies in regions of the LGNd subserving different parts of the visual field. Reconstructions of our electrode penetrations provide evidence that, unlike in the retina, cells having similar preferred orientations are clustered in the LGNd. This clustering is apparent for all cell types and in all parts of laminae A and A1. The tendency to cluster according to preferred orientation is evident for cells preferring radially, intermediately, and tangentially oriented stimuli and thus is not simply a reflection of the radial bias evident among retinal ganglion cells at the population level. It is already known that cells having inputs from different eyes, on-center, off-center, X-, Y-, W-type, and color-sensitive ganglion cells are distributed nonrandomly in the LGNd of cats and monkeys (for review, see Rodieck, 1979; Stone et al., 1979; Lennie, 1981; Stone, 1983). The finding that relay cells having similar preferred orientations are also distributed nonrandomly suggests that the initial sorting of virtually all properties segregated in visual cortex may begin in the LGNd.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk