Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1978 Mar 1;169(3):543-58.

Pyruvate carboxylase from a thermophilic Bacillus. Studies on the specificity of activation by acyl derivatives of coenzyme A and on the properties of catalysis in the absence of activator.

Abstract

1. Oxaloacetate synthesis catalysed by pyruvate carboxylase from a thermophilic Bacillus in the absence of acetyl-CoA required addition of high concentrations of pyruvate, MgATP(2-) and HCO(3) (-), and at 45 degrees C occurred at a maximum rate approx. 20% of that in the presence of a saturating concentration of acetyl-CoA. The apparent K(m) for HCO(3) (-) at pH7.8 was 400mm without acetyl-CoA, and 16mm with a saturating activator concentration. The relationship between reciprocal initial rate and reciprocal MgATP(2-) concentration was non-linear (convex-down) in the absence of acetyl-CoA, but the extent of deviation decreased as the activator concentration was increased. The relationship between reciprocal initial rate and reciprocal pyruvate concentration was non-linear (convex-down) in the presence or absence of acetyl-CoA. 2. The optimum pH for catalysis of oxaloacetate synthesis was similar in the presence or absence of acetyl-CoA. The variation with pH of apparent K(m) for HCO(3) (-) implicated residue(s) with pK(a) 8.6 in catalysis of the activator-independent oxaloacetate synthesis. 3. Linear Arrhenius and van't Hoff plots were observed for the temperature-dependence of oxaloacetate synthesis in the absence of acetyl-CoA over the range 25-55 degrees C. E(a) (activation energy) was 56.3kJ/mol and DeltaH(double dagger) (HCO(3) (-)) (enthalpy of activation) was -38.6kJ/mol. In the presence of acetyl-CoA, biphasic Arrhenius and van't Hoff plots are observed with a change of slope at 30 degrees C in each case. E(a) was 43.7 and 106.3kJ/mol above and below 30 degrees C respectively. 4. Incubation of Bacillus pyruvate carboxylase with trinitrobenzenesulphonate caused specific inactivation of acetyl-CoA-dependent catalytic activity associated with the incorporation of 1.3+/-0.2 trinitrophenyl residues per subunit. Activator-independent catalysis and regulatory inhibition by l-aspartate were unaffected. The rate of inactivation of acetyl-CoA-dependent catalysis by trinitrobenzenesulphonate was specifically decreased by addition of acetyl-CoA and other acetyl-CoA and other acyl-CoA species, but complete protection was not obtained. 5. All alkylacyl derivatives of CoA tested activated Bacillus pyruvate carboxylase; acetyl-CoA was the most effective. The apparent K(a) exhibited a biphasic relationship with acyl-chain length for the straight-chain homologues. Certain long-chain acyl-CoA species showed additional activation at a high concentration. Weak activation occurred on addition of CoA or adenosine 3',5'-bisphosphate, but carboxyacyl-CoA species and derivatives containing a modified phosphoadenosyl group were inhibitory. Thioesters of CoA with non-carboxylic acids, e.g. methanesulphonyl-CoA, serve as activators of the thermophilic Bacillus and Saccharomyces cerevisiae pyruvate carboxylases, but as inhibitors of pyruvate carboxylases obtained from chicken and rat liver. 6. alpha-Oxoglutarate mimics the effect of l-aspartate as a regulatory inhibitor of the pyruvate carboxylases from both the thermophilic Bacillus and Saccharomyces cerevisiae. l-Glutamate was ineffective in both cases.

PMID:
25648
PMCID:
PMC1183827
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk